Recent scientific findings relating to human affairs

Site Information Navigation
Contents:
  1. Human Values: A Quick Primer
  2. Live Science
  3. The impact of information technology in biological sciences - ScienceDirect
  4. Site Index

These have to do with the nature of the world and what can be learned about it. Science presumes that the things and events in the universe occur in consistent patterns that are comprehensible through careful, systematic study. Scientists believe that through the use of the intellect, and with the aid of instruments that extend the senses, people can discover patterns in all of nature. Science also assumes that the universe is, as its name implies, a vast single system in which the basic rules are everywhere the same.

Knowledge gained from studying one part of the universe is applicable to other parts. For instance, the same principles of motion and gravitation that explain the motion of falling objects on the surface of the earth also explain the motion of the moon and the planets. Science is a process for producing knowledge. The process depends both on making careful observations of phenomena and on inventing theories for making sense out of those observations. Change in knowledge is inevitable because new observations may challenge prevailing theories.

‘Dark DNA’ Is the Latest Mystery in the World of Genetics… But What Is It?

No matter how well one theory explains a set of observations, it is possible that another theory may fit just as well or better, or may fit a still wider range of observations. In science, the testing and improving and occasional discarding of theories, whether new or old, go on all the time. Scientists assume that even if there is no way to secure complete and absolute truth, increasingly accurate approximations can be made to account for the world and how it works.

Although scientists reject the notion of attaining absolute truth and accept some uncertainty as part of nature, most scientific knowledge is durable. The modification of ideas, rather than their outright rejection, is the norm in science, as powerful constructs tend to survive and grow more precise and to become widely accepted.

For example, in formulating the theory of relativity, Albert Einstein did not discard the Newtonian laws of motion but rather showed them to be only an approximation of limited application within a more general concept. The National Aeronautics and Space Administration uses Newtonian mechanics, for instance, in calculating satellite trajectories.

Moreover, the growing ability of scientists to make accurate predictions about natural phenomena provides convincing evidence that we really are gaining in our understanding of how the world works. Continuity and stability are as characteristic of science as change is, and confidence is as prevalent as tentativeness.

There are many matters that cannot usefully be examined in a scientific way. In other cases, a scientific approach that may be valid is likely to be rejected as irrelevant by people who hold to certain beliefs such as in miracles, fortune-telling, astrology, and superstition. Nor do scientists have the means to settle issues concerning good and evil, although they can sometimes contribute to the discussion of such issues by identifying the likely consequences of particular actions, which may be helpful in weighing alternatives.

Fundamentally, the various scientific disciplines are alike in their reliance on evidence, the use of hypothesis and theories, the kinds of logic used, and much more.

Nevertheless, scientists differ greatly from one another in what phenomena they investigate and in how they go about their work; in the reliance they place on historical data or on experimental findings and on qualitative or quantitative methods; in their recourse to fundamental principles; and in how much they draw on the findings of other sciences. Still, the exchange of techniques, information, and concepts goes on all the time among scientists, and there are common understandings among them about what constitutes an investigation that is scientifically valid.

Scientific inquiry is not easily described apart from the context of particular investigations. There simply is no fixed set of steps that scientists always follow, no one path that leads them unerringly to scientific knowledge. There are, however, certain features of science that give it a distinctive character as a mode of inquiry. Although those features are especially characteristic of the work of professional scientists, everyone can exercise them in thinking scientifically about many matters of interest in everyday life.

Sooner or later, the validity of scientific claims is settled by referring to observations of phenomena. Hence, scientists concentrate on getting accurate data. Such evidence is obtained by observations and measurements taken in situations that range from natural settings such as a forest to completely contrived ones such as the laboratory. To make their observations, scientists use their own senses, instruments such as microscopes that enhance those senses, and instruments that tap characteristics quite different from what humans can sense such as magnetic fields.

Human Values: A Quick Primer

Scientists observe passively earthquakes, bird migrations , make collections rocks, shells , and actively probe the world as by boring into the earth's crust or administering experimental medicines. In some circumstances, scientists can control conditions deliberately and precisely to obtain their evidence. They may, for example, control the temperature, change the concentration of chemicals, or choose which organisms mate with which others.

By varying just one condition at a time, they can hope to identify its exclusive effects on what happens, uncomplicated by changes in other conditions.


  • find gps vehicle tracking system at.
  • birth certificate translation to english.
  • Understand the basic premise behind the human relations management theory;
  • Chapter 1: The Nature of Science.
  • steps to a divorce in virginia.
  • The Trouble with the New "Islamic Science" - The New Atlantis.
  • Human Affairs?

Often, however, control of conditions may be impractical as in studying stars , or unethical as in studying people , or likely to distort the natural phenomena as in studying wild animals in captivity. In such cases, observations have to be made over a sufficiently wide range of naturally occurring conditions to infer what the influence of various factors might be. Because of this reliance on evidence, great value is placed on the development of better instruments and techniques of observation, and the findings of any one investigator or group are usually checked by others.

But they tend to agree about the principles of logical reasoning that connect evidence and assumptions with conclusions. Scientists do not work only with data and well-developed theories. Often, they have only tentative hypotheses about the way things may be. Such hypotheses are widely used in science for choosing what data to pay attention to and what additional data to seek, and for guiding the interpretation of data. In fact, the process of formulating and testing hypotheses is one of the core activities of scientists. To be useful, a hypothesis should suggest what evidence would support it and what evidence would refute it.

Live Science

A hypothesis that cannot in principle be put to the test of evidence may be interesting, but it is not likely to be scientifically useful. The use of logic and the close examination of evidence are necessary but not usually sufficient for the advancement of science. Scientific concepts do not emerge automatically from data or from any amount of analysis alone. Inventing hypotheses or theories to imagine how the world works and then figuring out how they can be put to the test of reality is as creative as writing poetry, composing music, or designing skyscrapers.

Sometimes discoveries in science are made unexpectedly, even by accident.


  • Science News.
  • Current Issue | Human Affairs.
  • Science has limits: A few things that science does not do.
  • divorce legal forms in florida!
  • Technology and Human Being | Philosophy of Science, Technology and Society.

But knowledge and creative insight are usually required to recognize the meaning of the unexpected. Aspects of data that have been ignored by one scientist may lead to new discoveries by another. Scientists strive to make sense of observations of phenomena by constructing explanations for them that use, or are consistent with, currently accepted scientific principles. The credibility of scientific theories often comes from their ability to show relationships among phenomena that previously seemed unrelated.

The impact of information technology in biological sciences - ScienceDirect

The theory of moving continents, for example, has grown in credibility as it has shown relationships among such diverse phenomena as earthquakes, volcanoes, the match between types of fossils on different continents, the shapes of continents, and the contours of the ocean floors. The essence of science is validation by observation.

But it is not enough for scientific theories to fit only the observations that are already known. Theories should also fit additional observations that were not used in formulating the theories in the first place; that is, theories should have predictive power.

What's Related

Demonstrating the predictive power of a theory does not necessarily require the prediction of events in the future. The predictions may be about evidence from the past that has not yet been found or studied. A theory about the origins of human beings, for example, can be tested by new discoveries of human-like fossil remains.

This approach is clearly necessary for reconstructing the events in the history of the earth or of the life forms on it.

It is also necessary for the study of processes that usually occur very slowly, such as the building of mountains or the aging of stars. Stars, for example, evolve more slowly than we can usually observe. Theories of the evolution of stars, however, may predict unsuspected relationships between features of starlight that can then be sought in existing collections of data about stars.

When faced with a claim that something is true, scientists respond by asking what evidence supports it. But scientific evidence can be biased in how the data are interpreted, in the recording or reporting of the data, or even in the choice of what data to consider in the first place. Scientists' nationality, sex, ethnic origin, age, political convictions, and so on may incline them to look for or emphasize one or another kind of evidence or interpretation. Not until female scientists entered the field was the importance of female primates' community-building behavior recognized.

Bias attributable to the investigator, the sample, the method, or the instrument may not be completely avoidable in every instance, but scientists want to know the possible sources of bias and how bias is likely to influence evidence. Scientists want, and are expected, to be as alert to possible bias in their own work as in that of other scientists, although such objectivity is not always achieved.

One safeguard against undetected bias in an area of study is to have many different investigators or groups of investigators working in it. It is appropriate in science, as elsewhere, to turn to knowledgeable sources of information and opinion, usually people who specialize in relevant disciplines. But esteemed authorities have been wrong many times in the history of science.

In the long run, no scientist, however famous or highly placed, is empowered to decide for other scientists what is true, for none are believed by other scientists to have special access to the truth. There are no preestablished conclusions that scientists must reach on the basis of their investigations. In the short run, new ideas that do not mesh well with mainstream ideas may encounter vigorous criticism, and scientists investigating such ideas may have difficulty obtaining support for their research.

Indeed, challenges to new ideas are the legitimate business of science in building valid knowledge. Even the most prestigious scientists have occasionally refused to accept new theories despite there being enough accumulated evidence to convince others. In the long run, however, theories are judged by their results: When someone comes up with a new or improved version that explains more phenomena or answers more important questions than the previous version, the new one eventually takes its place.

Science as an enterprise has individual, social, and institutional dimensions. Skip to content.

Site Index

Science News Needs You Support nonprofit journalism. For more information on how we use cookies on our websites, visit our Cookie Policy. By Christopher Crockett 17 hours ago. Physics Trapping atoms in a laser beam offers a new way to measure gravity By Maria Temming 17 hours ago. Humans Fossils suggest tree-dwelling apes walked upright long before hominids did By Bruce Bower November 6, Keener 55 mins ago.

By Science News Staff October 2, Maryam Shanechi designs machines to read minds. This may be the first known exoplanet with rain and clouds of water droplets. Climate change may be throwing coral sex out of sync. Vampire bat friendships endure from captivity to the wild Vampire bats can form social bonds that persist from a lab setting to the outdoors, suggesting the cooperative relationships are like friendships.

How these tiny insect larvae leap without legs.